您现在的位置是:专栏 >>正文
明魔法学遇零知当数护的识证上隐私保
专栏31人已围观
简介作者:0xAlpha DeriProtocol联合创始人 | 编译:DODO Research团队zk-SNARK的奇妙世界想象一下,你能向别人证明自己知道某个秘密,却不用透露秘密本身的内容——这就是zk-SNARK(零知识简洁非交互式知识论证)的魅力所在。作为一个经常和密码学打交道的从业者,我至今仍为这项技术的精妙设计感到惊叹。让我用一个日常生活中的类比来解释:就好比你向酒店前台证明自己确实预订... ...
作者:0xAlpha DeriProtocol联合创始人 | 编译:DODO Research团队
zk-SNARK的奇妙世界
想象一下,你能向别人证明自己知道某个秘密,却不用透露秘密本身的内容——这就是zk-SNARK(零知识简洁非交互式知识论证)的魅力所在。作为一个经常和密码学打交道的从业者,我至今仍为这项技术的精妙设计感到惊叹。
让我用一个日常生活中的类比来解释:就好比你向酒店前台证明自己确实预订了房间,但完全不需要出示身份证件或预订确认码。听起来像魔术?这正是数学带给我们的现实魔法。
从问题到证明的四步舞曲
构建zk-SNARK证明就像是在跳一支精心编排的舞蹈,需要经历四个关键步骤:
1. 首先,我们要把问题转化为算术电路——这就像把一道复杂的数学题拆解成基础的加减乘除运算。
2. 接着,将这些运算关系用矩阵公式来表示。
3. 然后,神奇的事情发生了——我们把这些矩阵公式转化为多项式,并找到它们之间的整除关系。
4. 最后,在椭圆曲线的加密空间里完成整个证明过程。
前三步其实都是在做"翻译"工作,把问题用不同的数学语言重新表述。真正精彩的是第四步,利用同态加密技术把证明过程搬到加密空间里进行,就像在镜中世界完成魔术表演,既证明了事实,又保护了秘密。
数学基础:你需要知道这些
理解这篇文章只需要大学一年级的代数知识。唯一可能让人犯怵的是椭圆曲线加密,但其实把它想象成一个具有特殊性质的指数函数就行——关键在于它的逆向计算至今仍是个数学难题。
在正式讲解前,我们先约定一些符号规则:矩阵用粗体大写字母(如A),向量用小写字母加箭头,标量就是普通字母。记住这些,待会看公式就不会晕头转向了。
实战案例:爱丽丝的证明之旅
让我们通过一个具体例子来理解整个过程。假设爱丽丝想证明她知道函数f(x)=x³+x²+5的一个解。虽然这个例子很简单,但它能清晰展示zk-SNARK的核心原理。
有趣的是,即便遇到包含if-else的复杂函数,我们也能轻松转化为类似的算术表达式。比如:
f(x,z) = (z-1)(x²+5) + z(x³+x²+5)
这个技巧让我想起编程中的条件表达式,只不过现在我们用纯数学的方式来表达逻辑分支。
第一步:构建算术电路
我们把f(x)分解成最基本的运算步骤:- s1 = x × x- s2 = s1 × x- s3 = s1 + s2- y = s3 + 5
这就像把一道复杂菜肴的烹饪过程拆解成切菜、炒制、调味等基础动作。每个步骤都形成一个"约束条件",总共4个约束构成了我们的算术电路。
第二步:矩阵的魔法
接下来,我们定义一个见证向量s = [1, x, s1, s2, s3, y],然后构造三个矩阵A、B、C。通过矩阵乘法,我们就能用s·A·s·B = s·C来表示所有约束条件。
这个过程最考验耐心的是逐行构建矩阵,确保每个算术门都能正确对应。就像拼乐高积木,必须确保每个零件都卡在正确的位置。
第三步:多项式的艺术
现在,我们要把这些矩阵转化为多项式。这就像是把离散的数据点连成平滑的曲线。使用拉格朗日插值法,我们可以找到满足条件的多项式PA、PB、PC。
最终我们会得到形如P(z) = t(z)h(z)的等式,其中t(z)是预设的多项式,h(z)是商多项式。这个可整除关系是整个证明的关键所在。
第四步:椭圆曲线上的加密之舞
最精彩的部分来了!我们要在椭圆曲线上完成证明。椭圆曲线密码学就像是在一个特殊的数字宇宙里进行运算,这里的基本单位是曲线上的点。
理解椭圆曲线点加法有个形象的比喻:想象在桌布上画一条曲线,用直尺找到两点间的交点,然后像折纸一样把这个点对称翻转到曲线另一侧,这就是"加法"的结果。
我们还需要引入双线性映射这个神奇工具,它允许我们在加密空间中进行乘法运算。这就像是在戴着手套的情况下完成精细的拼图操作。
完整的证明流程
在实际操作中,我们需要先生成公共参考字符串(称为验证钥VK)。有趣的是,无论问题多复杂,VK始终只需要7个椭圆曲线点。这让我想起万能钥匙的概念——同样的锁具可以保护无数个不同的保险箱。
爱丽丝生成证明的过程本质上是进行了一系列椭圆曲线点的线性组合。而验证过程则像在进行三重安全检查:
1. 确认证明中的点确实是参考点的合法组合
2. 验证各项系数的正确性
3. 检查最终的等式是否成立
为什么这很重要?
作为一个见证了区块链技术发展的从业者,我深刻体会到zk-SNARK的革命性意义。它让我们能在不泄露隐私的前提下完成验证,这在金融、医疗、投票等领域都有巨大应用潜力。
回想第一次理解这个机制时的震撼,就像突然看懂了魔术师的秘密手法。数学的深邃之美,往往就藏在这些看似简单的等式背后。
推荐阅读
Vitalik Buterin的《Zk-SNARKs: Under the Hood》
Thomas Chen等人的《零知识证明综述》
Maksym Petkus的《zk-SNARK工作原理权威解释》
零知识证明相关维基百科条目
Tags:
相关文章
投资智慧:睡个好觉比赚大钱更重要
专栏每到财报季,看着那些数字游戏真是让人眼花缭乱。不过说实话,我更喜欢琢磨投资大佬们闲聊时透露的只言片语,那里往往藏着真金白银。最近巴菲特又动了苹果的奶酪,顺带还买了家叫联合医保的"小公司"(虽然市值上千亿),这操作让不少财经写手又开始脑补大戏了。说实话,看到某些分析文章说"巴菲特察觉苹果危机"时,我都气笑了。要是真觉得苹果要完,老爷子早就清仓跑路了,哪会像现在这样还留着上千亿的仓位?这让我想起去年段... ...
【专栏】
阅读更多木头姐再放大招!1,600万美元加密基金引爆市场,比特币狂欢要来了?
专栏要说华尔街最敢"赌"的投资人,Cathie Wood绝对当仁不让。这位被粉丝亲切称为"木头姐"的投资女神,最近又在加密市场扔下一枚"炸弹"——她掌舵的方舟投资新募集了两支加密基金,总金额超过1,600万美元!根据3月15日SEC披露的文件,这支名为"方舟加密开曼基金"的产品已经筹集了900万美元,而它的"姊妹基金"——"方舟加密改革美国基金"也拿到了700多万美元。有意思的是,这两支基金都标榜"无... ...
【专栏】
阅读更多SEC委员皮尔斯罕见发声:LBRY案件让我夜不能寐
专栏在美国证券交易委员会(SEC)内部,皮尔斯委员一直以来都是个"异类"。这位以"加密妈妈"著称的监管者最近又在公开场合唱起了反调,不过这次她的担忧格外值得关注。一场"令人不安"的加密货币诉讼记得那是2021年春天,SEC突然对区块链内容平台LBRY提起诉讼,指控他们发行的LBC代币属于未注册证券。当时这个案子在圈内就引起不少争议,但谁也没想到两年多后的今天,它会导致一家创新企业被迫关门。皮尔斯在周五... ...
【专栏】
阅读更多